A fast solver for the Stokes equations with distributed forces in complex geometries

نویسندگان

  • George Biros
  • Lexing Ying
  • Denis Zorin
چکیده

We present a new method for the solution of the Stokes equations. The main features of our method are: (1) it can be applied to arbitrary geometries in a black-box fashion; (2) it is second-order accurate; and (3) it has optimal algorithmic complexity. Our approach, to which we refer as the embedded boundary integral method (EBI), is based on Anita Mayo s work for the Poisson s equation: ‘‘The Fast Solution of Poisson s and the Biharmonic Equations on Irregular Regions’’, SIAM Journal on Numerical Analysis, 21 (1984) 285–299. We embed the domain in a rectangular domain, for which fast solvers are available, and we impose the boundary conditions as interface (jump) conditions on the velocities and tractions. We use an indirect boundary integral formulation for the homogeneous Stokes equations to compute the jumps. The resulting equations are discretized by Nystr€ om s method. The rectangular domain problem is discretized by finite elements for a velocity–pressure formulation with equal order interpolation bilinear elements (Q1–Q1). Stabilization is used to circumvent the inf–sup condition for the pressure space. For the integral equations, fast matrix-vector multiplications are achieved via an N logN algorithm based on a block representation of the discrete integral operator, combined with (kernel independent) singular value decomposition to sparsify low-rank blocks. The regular grid solver is a Krylov method (conjugate residuals) combined with an optimal two-level Schwartz-preconditioner. For the integral equation we use GMRES. We have tested our algorithm on several numerical examples and we have observed optimal convergence rates. 2003 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Message-Passing Distributed Memory Parallel Algorithm for a Dual-Code Thin Layer, Parabolized Navier-Stokes Solver

In this study, the results of parallelization of a 3-D dual code (Thin Layer, Parabolized Navier-Stokes solver) for solving supersonic turbulent flow around body and wing-body combinations are presented. As a serial code, TLNS solver is very time consuming and takes a large part of memory due to the iterative and lengthy computations. Also for complicated geometries, an exceeding number of grid...

متن کامل

Mixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver

In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...

متن کامل

An Efficient and High-Order Accurate Boundary Integral Solver for the Stokes Equations in Three Dimensional Complex Geometries

This dissertation presents an efficient and high-order boundary integral solver for the Stokes equations in complex 3D geometries. The targeted applications of this solver are the flow problems in domains involving moving boundaries. In such problems, traditional finite element methods involving 3D unstructured mesh generation experience difficulties. Our solver uses the indirect boundary integ...

متن کامل

Incompressible laminar flow computations by an upwind least-squares meshless method

In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...

متن کامل

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003